

IDEAL EINSTEIN, CONFORMALLY FLAT AND SEMI-SYMMETRIC IMMERSIONS

BY

GUANGHAN LI*

Mathematical College, Sichuan University

Chengdu, 610064, P. R. China

e-mail: liguanghan2001@yahoo.com.cn

and

School of Mathematics and Computer Science

Hubei University, Wuhan, 430062, P. R. China

ABSTRACT

Recently, B. Y. Chen introduced a new intrinsic invariant of a manifold, and proved that every n -dimensional submanifold of real space forms $R^m(\varepsilon)$ of constant sectional curvature ε satisfies a basic inequality $\delta(n_1, \dots, n_k) \leq c(n_1, \dots, n_k)H^2 + b(n_1, \dots, n_k)\varepsilon$, where H is the mean curvature of the immersion, and $c(n_1, \dots, n_k)$ and $b(n_1, \dots, n_k)$ are constants depending only on n_1, \dots, n_k, n and k . The immersion is called **ideal** if it satisfies the equality case of the above inequality identically for some k -tuple (n_1, \dots, n_k) . In this paper, we first prove that every ideal Einstein immersion satisfying $n \geq n_1 + \dots + n_k + 1$ is totally geodesic, and that every ideal conformally flat immersion satisfying $n \geq n_1 + \dots + n_k + 2$ and $k \geq 2$ is also totally geodesic. Secondly we completely classify all ideal semi-symmetric hypersurfaces in real space forms.

1. Introduction and main theorems

Let M be an n -dimensional Riemannian manifold. Denote by $k(\pi)$ the sectional curvature of M associated with a plane section $\pi \subset T_p(M)$, $p \in M$. For any

* The author was supported by the NSFC and RFDP.

Received March 5, 2001

orthonormal basis e_1, \dots, e_n of the tangent space $T_p(M)$, the scalar curvature τ at p is defined to be

$$\tau(p) = \sum_{i \neq j} K(e_i \wedge e_j), \quad 1 \leq i, j \leq n.$$

Let L be a subspace of $T_p M$ of dimension $r \geq 2$ and $\{e_1, \dots, e_r\}$ an orthonormal basis of L . The scalar curvature $\tau(L)$ of the r -plane section L is defined by

$$\tau(L) = \sum_{\alpha \neq \beta} K(e_\alpha \wedge e_\beta), \quad 1 \leq \alpha, \beta \leq r.$$

For any integer $k \geq 0$, denote by $\Psi(n, k)$ the finite set consisting of unordered k -tuples (n_1, \dots, n_k) of integers $n_i \geq 2$, satisfying $n_1 < n$ and $n_1 + \dots + n_k \leq n$. Then let $\Psi(n)$ be the union $\bigcup_{k \geq 0} \Psi(n, k)$.

For each k -tuple $(n_1, \dots, n_k) \in \Psi(n)$, B. Y. Chen introduced in [1, 2, 3] a Riemannian invariant $\delta(n_1, \dots, n_k)$ by

$$(1.1) \quad 2\delta(n_1, \dots, n_k) = \tau - \inf\{\tau(L_1) + \dots + \tau(L_k)\},$$

where at each point $p \in M^n$, L_1, \dots, L_k run over all k mutually orthogonal subspaces of $T_p M$ such that $\dim L_j = n_j$, $j = 1, \dots, k$. And B. Y. Chen also proved in [3] the following optimal relationship between the invariants $\delta(n_1, \dots, n_k)$ and the squared mean curvature H^2 for an arbitrary submanifold in a real space form.

THEOREM A: *Let M^n be an n -dimensional submanifold in a real space form $R^m(\varepsilon)$ of constant curvature ε . Then for each k -tuple $(n_1, \dots, n_k) \in \Psi(n)$, we have*

$$(1.2) \quad \delta(n_1, \dots, n_k) \leq c(n_1, \dots, n_k)H^2 + b(n_1, \dots, n_k)\varepsilon.$$

The equality case of inequality (1.2) holds at a point $p \in M$ if and only if there exists an orthonormal basis $\{e_1, \dots, e_m\}$ at p , such that the shape operator of M in $R^m(\varepsilon)$ at p with respect to $\{e_1, \dots, e_m\}$ takes the form

$$(1.3) \quad A_r = \begin{pmatrix} A_1^r & & & \\ & \ddots & & \\ & & A_k^r & \\ & & & \mu_r I \end{pmatrix}, \quad r = n+1, \dots, m,$$

where I is an identity matrix and A_j^r is a symmetric $n_j \times n_j$ submatrix satisfying

$$(1.4) \quad \text{tr } A_1^r = \dots = \text{tr } A_k^r = \mu_r,$$

and $c(n_1, \dots, n_k)$ and $b(n_1, \dots, n_k)$ are positive constants defined by

$$(1.5-1) \quad c(n_1, \dots, n_k) = \frac{n^2(n+k-1-\sum n_j)}{2(n+k-\sum n_j)}$$

and

$$(1.5-2) \quad b(n_1, \dots, n_k) = \frac{1}{2}(n(n-1) - \sum n_j(n_j-1)).$$

An isometric immersion in a real space form is called **ideal** in the sense of [3] if it satisfies the equality case of inequality (1.2) identically for some k -tuple, that is

$$(1.6) \quad \delta(n_1, \dots, n_k) = c(n_1, \dots, n_k)H^2 + b(n_1, \dots, n_k)\varepsilon.$$

Ideal immersions associated with the simplest 1-tuple, namely $(2) \in \Psi(n)$, have been studied deeply in the last few years and many interesting results have been obtained (see for instance [1, 4, 5, 7]). But little is known concerning ideal immersions associated with a general k -tuple $(n_1, \dots, n_k) \in \Psi(n)$ except those of immersions in a complex space form (see [2]). Dillen, Petrovic and Verstraelen (cf. [7]) have completely classified the ideal Einstein, ideal conformally flat and semi-symmetric immersions associated with $(2) \in \Psi(n)$. In this paper we consider such ideal immersion associated with the general k -tuple $(n_1, \dots, n_k) \in \Psi(n)$. For convenience denote by $s_k = n_1 + \dots + n_k$ (and sometimes write s).

First we have the following theorems about ideal Einstein and conformally flat immersions.

THEOREM 1: *Every ideal immersion in real space forms satisfying $n \geq s+1$ is Einstein if and only if it is totally geodesic.*

THEOREM 2: *Every ideal immersion in real space forms satisfying $n \geq s+2$ and $k \geq 2$ is conformally flat if and only if it is totally geodesic.*

A Riemannian manifold is called **semi-symmetric** (cf. [8]) if it satisfies $R \cdot R = 0$ (see section 2 below). The second purpose of this paper is classifying all ideal semi-symmetric hypersurfaces of real space forms.

THEOREM 3: *Let M^n be an ideal immersion in a Euclidean space E^{n+1} . Then M is semi-symmetric if and only if M is locally congruent to an open part of one of the following hypersurfaces:*

- (1) a totally geodesic hyperplane E^n ,
- (2) an $(n-2)$ -ruled minimal hypersurface,

- (3) a standard n -sphere S^n ,
 - (4) an elliptic hypercone C^n ,
 - (5) the product of a standard l -sphere S^l and an $(n-l)$ -dimensional affine subspace E^{n-l} and $l \geq 2$,
 - (6) the product of an l -dimensional elliptic hypercone C^l and an $(n-l)$ -dimensional affine subspace E^{n-l} and $l \geq 2$,
- where C^n is the elliptic hypercone of E^{n+1} (for definition see [6]), and S^l and C^l are the hypersphere and hypercone in E^{l+1} respectively; and E^{n-l} is a Euclidean subspace of E^{n+1} orthogonal to E^{l+1} .

THEOREM 4: Every ideal immersed hypersurface M in a sphere $S^{n+1}(1)$ is semi-symmetric if and only if M is locally congruent to a hypersphere $S^n(c)$ or a Riemannian isoparametric torus $S^l(a) \times S^{n-l}(b)$ for suitable a and b where $a^2 + b^2 = 1$ and $l = 1, \dots, n-1$.

THEOREM 5: Every ideal immersed hypersurface in a hyperbolic space $H^{n+1}(-1)$ is semi-symmetric if and only if M is locally congruent to an umbilical hypersurface or an isoparametric hypersurface $S^l(a) \times H^{n-l}(b)$ for suitable a and b satisfying $a^2 - b^2 = -1$, and $l = 1, \dots, n-1$.

2. Some simple lemmas

Let $x: M^n \rightarrow R^m(\varepsilon)$ be an isometric immersion of a real space form of constant curvature ε . For any k -tuple $(n_1, \dots, n_k) \in \Psi(n)$, denote by I_i the index set $\{n_1 + \dots + n_{i-1} + 1, \dots, n_1 + \dots + n_i\}$, $i = 1, \dots, k$ and $s+1 \leq \alpha, \beta, \dots \leq n$ where $s = n_1 + \dots + n_k$. The Riemannian curvature tensor R is defined by $R(X, Y) = \nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X, Y]}$ where ∇ is the Levi-Civita connection of M . Denote by H , h and Ric the mean curvature, the second fundamental form, and Ricci tensor respectively; h_{ij}^r is the component of h .

If we choose e_{n+1} parallel to the mean curvature vector, Theorem A can be rewritten as

LEMMA 2.1: Let $x: M^n \rightarrow R^m(\varepsilon)$ be an isometric immersion in a real space form of constant curvature ε . Then for each k -tuple $(n_1, \dots, n_k) \in \Psi(n)$, we have (1.2) and the equality case of (1.2) holds if and only if there exists an orthonormal basis

$\{e_1, \dots, e_m\}$ such that the shape operator of M takes the form
(2.1)

$$A_{n+1} = \begin{pmatrix} a_1 & & & & \\ & \ddots & & & \\ & & a_s & & \\ & & & \mu & \\ & & & & \ddots \\ & & & & & \mu \end{pmatrix}, \quad A_t = \begin{pmatrix} A_1^t & & & & \\ & \ddots & & & \\ & & A_k^t & & \\ & & & 0 & \\ & & & & \ddots \\ & & & & & 0 \end{pmatrix}$$

satisfying $\sum_{i \in I_i} a_i = \mu$, $\text{tr } A_i^t = 0$, for all $t = n+2, \dots, m$, and $i = 1, \dots, k$.

LEMMA 2.2: The sectional curvatures of M are

$$K_{ij} = K(e_i \wedge e_j) = \varepsilon + a_i a_j + \sum_{t=n+2}^m \{h_{ii}^t h_{jj}^t - (h_{ij}^t)^2\}, \quad i, j \in I_i;$$

$$K_{ij} = K(e_i \wedge e_j) = \varepsilon + a_i a_j + \sum_{t=n+2}^m h_{ii}^t h_{jj}^t, \quad i \in I_i, \quad j \in I_j, \quad I_i \neq I_j;$$

$$K_{i\alpha} = K(e_i \wedge e_\alpha) = \varepsilon + a_i \mu, \quad i \in I_i, \quad s+1 \leq \alpha \leq n;$$

$$K_{\alpha\beta} = K(e_\alpha \wedge e_\beta) = \varepsilon + \mu^2.$$

Proof: The Lemma is an immediate result of the Gaussian equation and (2.1).

LEMMA 2.3: The Ricci curvatures of M are

$$(2.2) \quad \text{Ric}(e_i, e_i) = (n-1)\varepsilon + (n-s+k)a_i\mu - \left\{ a_i^2 + \sum_{t=n+2, j \in I_i}^m (h_{ij}^t)^2 \right\},$$

for $i \in I_i$, and

$$(2.3) \quad \text{Ric}(e_\alpha, e_\alpha) = (n-1)\varepsilon + (n-s+k-1)\mu^2.$$

Proof: By Lemma 2.2 and (2.1) we have

$$\begin{aligned} \text{Ric}(e_i, e_i) &= K_{i1} + \dots + K_{is} + \sum_{\alpha=s+1}^n K_{i\alpha} \\ &= (n-1)\varepsilon + a_i \left\{ \sum_{i \neq j \in I_i} a_j + (k-1)\mu + (n-s)\mu \right\} \\ &\quad + \sum_{t=n+2}^m h_{ii}^t \left(\sum_{i \neq j \in I_i} h_{jj}^t - \sum_{i \neq j \in I_i} (h_{ij}^t)^2 \right) \\ &= (n-1)\varepsilon + (n-s+k)a_i\mu - a_i^2 - \sum_{t=n+2, j \in I_i}^m (h_{ij}^t)^2, \end{aligned}$$

which implies (2.2); (2.3) is similar.

A Riemannian manifold M is called **semi-symmetric** (cf. [8]) if

$$(R(X, Y)R)(U, V)W = 0$$

for all $X, Y, U, V, W \in TM$, where $R(X, Y)R$ is defined by

$$(2.4) \quad \begin{aligned} (R(X, Y) \cdot R)(U, V)W &= R(X, Y)(R(U, V)W) \\ &\quad - R(R(X, Y)U, V)W - R(U, R(X, Y)V)W - R(U, V)(R(X, Y)W). \end{aligned}$$

Semi-symmetry is a proper generalization of local symmetry ($\nabla R = 0$).

The Gaussian equation of an isometric immersed hypersurface $x: M^n \rightarrow R^{n+1}(\varepsilon)$ in a real space form can be written as

$$(2.5) \quad R(X, Y)Z = \langle Y, Z \rangle X - \langle X, Z \rangle Y + \langle AY, Z \rangle AX - \langle AX, Z \rangle AY.$$

Now we can choose a local orthonormal frame $\{e_1, \dots, e_{n+1}\}$ such that $Ae_i = \lambda_i e_i$, $i = 1, \dots, n$.

LEMMA 2.4: *An isometric immersed hypersurface $x: M^n \rightarrow R^{n+1}(\varepsilon)$ is semi-symmetric if and only if*

$$(2.6) \quad \lambda_i(\lambda_j - \lambda_k)(\varepsilon + \lambda_j \lambda_k) = 0$$

where i, j and k are distinct.

Proof: By a direct calculation we have by (2.4) and (2.5) that

$$(R(e_j, e_k)R)(e_i, e_l)e_j = -\lambda_i(\lambda_j - \lambda_k)(\varepsilon + \lambda_j \lambda_k)e_i,$$

which implies (2.6). The converse also holds because $(R(X, Y)R)(U, V)W \equiv 0$ if the distinct number of vectors X, Y, U, V and W is different from 3.

J. Deprez proved the following local classification theorem (in [8]) of hypersurfaces immersed in a Euclidean space E^{n+1} .

LEMMA 2.5: *Let M^n be an n -dimensional Riemannian manifold which is isometrically immersed in E^{n+1} , such that $\text{rank } A \geq 3$ at some point. Then M^n is semi-symmetric if and only if M^n is locally congruent to an open part of one of the following hypersurfaces:*

- (1) a hypersphere S^n ,
- (2) an elliptic hypercone C^n ,

- (3) the product of a standard l -dimensional sphere S^l and an $(n-l)$ -dimensional affine subspace E^{n-l} and $l \geq 3$,
- (4) the product of an l -dimensional hypercone C^l and an $(n-l)$ -dimensional affine subspace E^{n-l} and $l \geq 3$,
- where C^l , S^l and E^{n-l} are similar to Theorem A.

3. Proof of Theorem 1

If M is an ideal Einstein immersion, then $\text{Ric} = \frac{\tau}{n}g$, where g is the metric tensor of M . So by (2.2) and (2.3) we have

$$(n-s+k)a_i\mu - \left\{ a_i^2 + \sum_{t=n+2, j \in I_1}^m (h_{ij}^t)^2 \right\} = (n-s+k-1)\mu^2.$$

By summation in I_1 one finds from (2.1)

$$(3.1) \quad (n-s+k)\mu^2 - n_1(n-s+k-1)\mu^2 = \sum_{i \in I_1} a_i^2 + \sum_{t=n+2, i, j \in I_1}^m (h_{ij}^t)^2.$$

Equation (3.1) holds for n_2, \dots, n_k , too. So by summation we have

$$(3.2) \quad \sum_{i=1}^s a_i^2 + \sum_{t=n+2, i, j \in I_\sigma, 1 \leq \sigma \leq k}^m (h_{ij}^t)^2 = [(n-s+k)(k-s)+s]\mu^2.$$

Now we claim that $f(k, s) = (n-s+k)(k-s)+s = s^2 - (n+2k-1)s + (k^2 + nk) \leq 0$ for any $k \geq 1$ and $2 \leq s \leq n-1$.

By definition for any k -tuple $(n_1, \dots, n_k) \in \Psi(n)$, $k = 1$ when $s = 2$ and $n \geq 3$. Moreover $2 \leq s \leq n-1$, and $k \leq \lfloor \frac{n-1}{2} \rfloor$. An easy calculation shows that

$$f(k, 2) = f(1, 2) = 3 - n \leq 0,$$

$$f(k, n-1) = k(k+2-n) \leq k\left(\frac{n-1}{2} + 2 - n\right) = -\frac{k(n-3)}{2} \leq 0,$$

which implies $f(k, s) \leq 0$ by the property of quadric functions. By this claim, (3.2) indicates that M is totally geodesic. The converse holds trivially. This completes the proof of Theorem 1.

Remark: When $\varepsilon = 0$, $k = 1$ and $n_1 = 2$, Theorem 1 is obtained by Dillen, Petrovic and Verstraelen in [7].

4. Ideal conformally flat immersion

The Weyl's conformal curvature tensor C of an n -dimensional Riemannian manifold M is defined by

$$(4.1) \quad \begin{aligned} C_{ijkl} = & R_{ijkl} - \frac{1}{n-2} \{ R_{ik} \delta_{jl} - R_{il} \delta_{jk} + \delta_{ik} R_{jl} - \delta_{il} R_{jk} \} \\ & + \frac{\tau}{(n-1)(n-2)} (\delta_{ik} \delta_{jl} - \delta_{il} \delta_{jk}), \end{aligned}$$

with respect to an orthonormal frame field, where $R_{ik} = \text{Ric}(e_i, e_k)$. For dimension $n \geq 3$, M is conformally flat if and only if $C = 0$.

Next we give the

Proof of Theorem 2: For $i, j \in I_1$ we have by $C_{ijij} = 0$,

$$K_{ij} - \frac{1}{n-2} \{ R_{ii} + R_{jj} \} + \frac{\tau}{(n-1)(n-2)} = 0.$$

By Lemmas 2.2 and 2.3 we get

$$(4.2) \quad \begin{aligned} K_{ij} + \frac{1}{n-2} \left\{ a_i^2 + a_j^2 + \sum_{t,l \in I_1} [(h_{il}^t)^2 + (h_{jl}^t)^2] \right\} \\ - \frac{n-s+k}{n-2} (a_i + a_j) \mu + \frac{\tau}{(n-1)(n-2)} - \frac{2(n-1)}{n-2} \varepsilon = 0. \end{aligned}$$

Similarly, using $C_{\alpha\beta\alpha\beta} = 0$ and Lemmas 2.2 and 2.3 we have

$$(4.3) \quad \varepsilon + \frac{\tau}{(n-1)(n-2)} = \frac{n+2k-2s}{n-2} \mu^2 + \frac{2(n-1)}{n-2} \varepsilon.$$

Inserting (4.3) into (4.2) we obtain

$$(4.4) \quad \begin{aligned} K_{ij} + \frac{1}{n-2} \left\{ a_i^2 + a_j^2 + \sum_{t,l \in I_1} [(h_{il}^t)^2 + (h_{jl}^t)^2] \right\} \\ - \frac{n-s+k}{n-2} (a_i + a_j) \mu + \frac{n+2k-2s}{n-2} \mu^2 - \varepsilon = 0. \end{aligned}$$

Also, $C_{i\alpha i\alpha} = 0$ together with Lemmas 2.2 and 2.3 gives

$$(4.5) \quad \begin{aligned} \frac{s-k-2}{n-2} a_i \mu - \frac{n-s+k-1}{n-2} \mu^2 + \frac{1}{n-2} \left\{ a_i^2 + \sum_{t,l \in I_1} (h_{il}^t)^2 \right\} \\ + \frac{\tau}{(n-1)(n-2)} + \varepsilon - \frac{2(n-1)}{n-2} \varepsilon = 0. \end{aligned}$$

Inserting (4.3) into (4.5) we have

$$(4.6) \quad \frac{1}{n-2} \left\{ a_i^2 + \sum_{t,l \in I_1} (h_{il}^t)^2 \right\} + \frac{s-k-2}{n-2} a_i \mu - \frac{s-k-1}{n-2} \mu^2 = 0.$$

For another $j \in I_1$, (4.6) also holds. By summation we get

$$(4.7) \quad \begin{aligned} & \frac{1}{n-2} \left\{ a_i^2 + a_j^2 + \sum_{t,l \in I_1} [(h_{il}^t)^2 + (h_{jl}^t)^2] \right\} \\ & + \frac{s-k-2}{n-2} (a_i + a_j) \mu - \frac{2(s-k-1)}{n-1} \mu^2 = 0. \end{aligned}$$

Combination of (4.4) and (4.7) gives

$$(4.8) \quad (a_i + a_j) \mu + \varepsilon - K_{ij} - \mu^2 = 0, \quad \forall i \neq j \in I_1.$$

(4.6) holds for all $i \in I_1$, so by summation in I_1 we get

$$(4.9) \quad \frac{1}{n-2} \left\{ \sum_{i \in I_1} a_i^2 + \sum_{t,i,j \in I_1} (h_{ij}^t)^2 \right\} = \frac{n_1(s-k-1) - (s-k-2)}{n-2} \mu^2.$$

(4.9) also holds for any n_i , so by summation for n_i we have

$$\frac{1}{n-2} \left\{ \sum_{i=1}^s a_i^2 + \sum_{t,i,j} (h_{ij}^t)^2 \right\} = \frac{s(s-k-1) - k(s-k-2)}{n-2} \mu^2,$$

which implies by (2.1) that

$$(4.10) \quad \|h\|^2 = [n + (s-k)(s-k-2)] \mu^2.$$

Now (4.8) holds for any K_{ij} and $i \neq j$ in I_1 ; then by summation we have

$$\frac{1}{2} \tau(L_1) = \sum_{1 \leq i < j \leq n_1} K_{ij} = \frac{n_1(n_1-1)}{2} \varepsilon + \frac{(n_1-1)(2-n_1)}{2} \mu^2.$$

The above equation also holds for any n_i , thus by summation again

$$(4.11) \quad \frac{1}{2} \sum_{i=1}^k \tau(L_i) = \frac{1}{2} \sum_{i=1}^k n_i(n_i-1) \varepsilon + \frac{1}{2} \{3s-2k - \sum n_i^2\} \mu^2.$$

Because M is an ideal immersion, then from (1.1), (1.5), (1.6) and (4.11) we know that

$$(4.12) \quad \begin{aligned} \tau = & \{(n^2 - 2ns + 2nk - n) + (k^2 + s^2 - 2ks + 4s - 3k - \sum n_i^2)\} \mu^2 \\ & + n(n-1) \varepsilon. \end{aligned}$$

On the other hand, by the Gaussian equation and (4.10) we have

$$(4.13) \quad \tau = n(n-1)\varepsilon + [(n^2 - 2ns + 2nk - n) + (2s - 2k)]\mu^2.$$

Here we have used

$$H^2 = \frac{(n-s+k)^2}{n^2} \mu^2.$$

Combination of (4.12) and (4.13) gives

$$(4.14) \quad \left[(k-s)^2 + 2s - k - \sum_{i=1}^k n_i^2 \right] \mu^2 = 0.$$

LEMMA 4.1: *Let $\omega(k) = (k-s)^2 + 2s - k - \sum_{i=1}^k n_i^2$. Then $\omega(k) > 0$ for all $k \geq 2$ and $n \geq s+2$.*

Proof (Using induction): First note that the Lemma holds for $k = 2$,

$$\omega(2) = 2(n_1 n_2 - n_1 - n_2 + 1) = 2(n_1 - 1)(n_2 - 1) > 0.$$

We assume the lemma holds for any k ; then for $k+1$,

$$\begin{aligned} \omega(k+1) &= (k+1-s_{k+1})^2 + 2s_{k+1} - (k+1) - \sum_{i=1}^{k+1} n_i^2 \\ &= [(k-s_k) - (n_{k+1} - 1)]^2 + 2s_k + 2n_{k+1} - k - 1 - \sum_{i=1}^k n_i^2 - n_{k+1}^2 \\ &= [(k-s_k)^2 + 2s_k - k - \sum_{i=1}^k n_i^2] \\ &\quad + [(n_{k+1} - 1)^2 - 2(k-s_k)(n_{k+1} - 1) - (n_{k+1}^2 + 1 - 2n_{k+1})] \\ &= \omega(k) + 2(s_k - k)(n_{k+1} - 1) > 0. \end{aligned}$$

Thus the lemma follows.

By Lemma 4.1, (4.14) implies that $\mu = 0$. Now by (4.10), $\|h\|^2 = 0$, i.e., M is totally geodesic. The converse is obvious. This completes the proof of Theorem 2.

From the proof we know that when $k = 1$, (4.13) becomes

$$\tau = (n-1)(n+2-2n_1)\mu^2 + n(n-1)\varepsilon.$$

Thus we have immediately the following corollaries.

COROLLARY 4.2: Let $k = 1$, $n \geq n_1 + 2$ and $n \neq 2(n_1 - 1)$. Then when $\tau = n(n - 1)\varepsilon$, M is ideal conformally flat if and only if M is totally geodesic.

COROLLARY 4.3: For $k = 1$, $n_1 = 2$, M is ideal conformally flat if and only if $K_{12} = \varepsilon$.

Remark 4.4: When $k > 1$ and $s = n + 1$, by a similar calculation as in the proof of Theorem 2 above we obtain

$$\tau = \frac{s}{s^2 - \sum_{i=1}^k n_i^2} [2s^2 - 2k \sum_{i=1}^k n_i^2 + (k^2 + k - 2)s - (k^2 - k)]\mu^2 + s(s + 1)\varepsilon.$$

Let $g(n_1, \dots, n_k) = 2s^2 - 2k \sum_{i=1}^k n_i^2 + (k^2 + k - 2)s - (k^2 - k) \neq 0$. It is easy to see that if $\tau = n(n - 1)\varepsilon$, then M is ideal conformally flat if and only if M is totally geodesic.

5. Ideal semi-symmetric hypersurfaces

Proof of Theorem 3: If $\text{rank } A \geq 3$ at some point, then Lemma 2.5 says that M is semi-symmetric if and only if M is one of (3)–(6) in Theorem 3, where $l \geq 3$ in (5) and (6). First note that any ideal immersion is one of the above 4 kinds of hypersurfaces if it is semi-symmetric. Secondly, the above 4 immersed hypersurfaces are all ideal immersions. Next we consider the case $\text{rank } A \leq 2$.

If $\text{rank } A = 0$, M is the totally geodesic hyperplane.

If $\text{rank } A = 1$, the case doesn't happen because M is ideal.

If $\text{rank } A = 2$, we assume $a_i \neq 0$, $a_j \neq 0$ and $i \neq j$. First note that we can assume $i, j \in I_1$. Otherwise, if $i \in I_1$ and $j \in I_2$, we have $a_i = a_j = \mu$. When μ is constant, M is case (5) for $l = 2$, and when $\mu \neq$ constant, M is case (6) for $l = 2$. Now for $i, j \in I_1$, $a_i + a_j = 0$. So M is an $(n - 2)$ -ruled minimal hypersurface. The converse also holds. This completes the proof of Theorem 3.

In order to prove Theorems 4 and 5, we give the following lemmas.

LEMMA 5.1: Let $x: M^n \rightarrow R^{n+1}(\varepsilon \neq 0)$ be a minimal hypersurface in the space form with non-zero constant curvature ε . Then

(1) when $\varepsilon = 1$, M is semi-symmetric if and only if M is totally geodesic or has two distinct principal curvatures

$$\lambda_1 = \sqrt{\frac{n-l}{l}} \quad \text{and} \quad \lambda_2 = -\sqrt{\frac{l}{n-l}}$$

with multiplicities l and $n - l$, respectively;

(2) when $\varepsilon = -1$, M is semi-symmetric if and only if M is totally geodesic.

Proof: If M is not totally geodesic, there exist two non-zero principal curvatures such that $\lambda_1 \neq \lambda_2$. By (2.6),

$$(5.1) \quad \lambda_1(\lambda_2 - \lambda_i)(\varepsilon + \lambda_2\lambda_i) = 0$$

and

$$(5.2) \quad \lambda_2(\lambda_1 - \lambda_i)(\varepsilon + \lambda_1\lambda_i) = 0,$$

for any $i \neq 1, 2$. Obviously λ_i is either λ_1 or λ_2 . We assume that the multiplicities of λ_1 and λ_2 are l and $n - l$, respectively. Then

$$(5.3) \quad l\lambda_1 + (n - l)\lambda_2 = 0.$$

Moreover, by (5.1) and (5.2) we have

$$(5.4) \quad \lambda_1\lambda_2 + \varepsilon = 0.$$

By (5.3) and (5.4) we have

$$\lambda_1^2 = \frac{n-l}{l}\varepsilon, \quad \lambda_2^2 = \frac{l}{n-l}\varepsilon.$$

Thus we have

$$\lambda_1 = \sqrt{\frac{n-l}{l}} \quad \text{and} \quad \lambda_2 = -\sqrt{\frac{l}{n-l}} \quad \text{for } \varepsilon = 1.$$

For $\varepsilon = -1$ this case doesn't happen. Thus Lemma 5.1 follows.

LEMMA 5.2: *Let $x: M^n \rightarrow R^{n+1} (\varepsilon \neq 0)$ be non-minimal and non-umbilical semi-symmetric hypersurfaces. Then M is ideal if and only if M has two constant principal curvatures a_1 and a_2 such that $a_1a_2 + \varepsilon = 0$.*

Proof: Case (1), $n \geq s + 1$.

By assumption $\mu \neq 0$. If there is some $a_i = 0$ (for instance $a_1 = 0$), then by (2.6), $\mu(a_1 - a_i)(\varepsilon + a_1a_i) = -\mu a_i \varepsilon = 0$ for $i \neq 1$, which implies $a_i = 0$ for all i . It contradicts $\mu \neq 0$. Now we have $a_i \neq 0$ for all $i \in \{1, \dots, s\}$. Similar to the proof of Lemma 5.1, $a_i = \mu$ or $a_i = -\varepsilon/\mu$. Without loss of generality we assume that the multiplicity of eigenvalue μ in the submatrix A_1 is l_1 . By $\text{tr } A_1 = \mu$, we have

$$(n_1 - l_1)(-\varepsilon/\mu) + l_1\mu = \mu$$

which implies that $\mu^2 = (n_1 - l_1)/(l_1 - 1)$. Note that $l_1 \neq 1$. Hence

$$\mu = \sqrt{\frac{n_1 - l_1}{l_1 - 1}} \quad \text{and} \quad a_i = -\sqrt{\frac{l_1 - 1}{n_1 - l_1}} \quad \text{for } \varepsilon = 1, \quad l_1 > 1,$$

and

$$\mu = \sqrt{n_1} \quad \text{and} \quad a_i = 1/\sqrt{n_1} \quad \text{for } \varepsilon = -1, \quad l_1 = 0.$$

The discussion for n_2, \dots, n_k is similar and $n_1 = n_2 = \dots = n_k$.

Case (2), $n = s$ and $k \geq 2$.

Similar to case (1) none of the principal curvatures is zero and only two, say a_1 and a_2 , are different and satisfy

$$(5.5) \quad a_1 a_2 + \varepsilon = 0.$$

Now we consider the two submatrixes A_1 and A_2 . Without loss of generality we assume A_1 and A_2 take the following forms:

$$A_1 = \begin{pmatrix} a_1 I_{l_1} & & \\ & \ddots & \\ & & a_2 I_{n_1 - l_1} \end{pmatrix}, \quad A_2 = \begin{pmatrix} a_1 I_{l_2} & & \\ & \ddots & \\ & & a_2 I_{n_2 - l_2} \end{pmatrix},$$

for some integral functions l_1 and l_2 . Then by assumption

$$(5.6) \quad \begin{aligned} l_1 a_1 + (n_1 - l_1) a_2 &= l_2 a_1 + (n_2 - l_2) a_2, \\ (l_1 - l_2) a_1 &= [(n_2 - n_1) + (l_1 - l_2)] a_2. \end{aligned}$$

Let $l = l_1 - l_2$. By (5.5) and (5.6) we get

$$(5.7) \quad l(-\varepsilon - a_1^2) = (n_2 - n_1)\varepsilon,$$

which implies that l is a constant integer because a_1 is a continuous function. If $l \neq 0$, it follows from (5.7) that a_1 is constant and so is a_2 . If $l = 0$, then $l_1 = l_2$. A similar discussion applies to n_3, \dots, n_k and we conclude that the multiplicities of a_1 and a_2 are all $n/2$ where n is even in this case. Let $D(a_1) = \text{span}\{e_1, \dots, e_{n/2}\}$ and $D(a_2) = \text{span}\{e_{\frac{n}{2}+1}, \dots, e_n\}$ be the curvature distributions of a_1 and a_2 , respectively. Obviously $n/2 > 1$. It's well known that the principal curvatures are constant along the integral manifolds of their corresponding distributions. So $e_i(a_1) = 0$ for $i \in \{1, \dots, n/2\}$ and $e_j(a_2) = 0$ for $j \in \{n/2 + 1, \dots, n\}$. Thus $0 = e_i(a_1 a_2 + \varepsilon) = e_i(a_1) a_2 + a_1 e_i(a_2) = a_1 e_i(a_2)$, which implies that $e_i(a_2) = 0$ for $i \in \{1, \dots, n/2\}$ and so a_2 is constant. By (5.5), a_1 is constant, too. This completes the proof of the Lemma.

Proof of Theorems 4 and 5: By Lemmas 5.1 and 5.2, we know M is an isoparametric hypersurface with at most two distinct principal curvatures. Thus by a famous classification theorem of Cartan, if M is ideal semi-symmetric, it must be the hypersurfaces described in Theorems 4 and 5. Conversely, the above hypersurfaces are also ideal semi-symmetric immersions for suitable a and b . So Theorem 4 and Theorem 5 follows.

ACKNOWLEDGEMENT: The author expresses his gratitude to Professor A-M Li and Professor Guosong Zhao for their constant guidance and some valuable suggestions.

References

- [1] B. Y. Chen, *Some pinching and classification theorems for minimal submanifolds*, Archiv der Mathematik **60** (1993), 568–578.
- [2] B. Y. Chen, *Ideal Lagrangian immersions in complex space forms*, Mathematical Proceedings of the Cambridge Philosophical Society **128** (2000), 511–533.
- [3] B. Y. Chen, *Some new obstructions to minimal and Lagrangian isometric immersions*, Japanese Journal of Mathematics **26** (2000), 105–127.
- [4] B. Y. Chen and L. Vrancken, *CR-submanifolds of complex hyperbolic spaces satisfying a basic equality*, Israel Journal of Mathematics **110** (1999), 341–358.
- [5] B. Y. Chen and J. Yang, *Elliptic functions, theta function and hypersurfaces satisfying a basic equality*, Mathematical Proceedings of the Cambridge Philosophical Society **125** (1999), 463–509.
- [6] J. Deprez, *Semi-parallel immersions*, in *Geometry and Topology of Submanifolds, I* (J.-M. Morvan and L. Verstraelen, eds.), World Scientific, Singapore, 1989, pp. 73–88.
- [7] F. Dillen, M. Petrovic and L. Verstraelen, *Einstein, conformally flat and semi-symmetric submanifolds satisfying Chen's equality*, Israel Journal of Mathematics **100** (1997), 163–169.
- [8] I. Van de Woestijne, *Semi-symmetric hypersurfaces*, in *Geometry and Topology of Submanifolds, I* (J.-M. Morvan and L. Verstraelen, eds.), World Scientific, Singapore, 1989, pp. 231–244.