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A B S T R A C T  

Recently, B. Y. Chen introduced a new intrinsic invariant of a mani- 
fold, and proved that  every n-dimensional submanifold of real space 
forms Rm(c) of constant sectional curvature e satisfies a basic inequality 
(~(n l , . . . , nk)  (_ c ( n l , . . .  ,nk)H2+ b ( n l , . . . , n k ) c ,  where H is the mean 
curvature of the immersion, and c(nl , . . . ,  nk) and b(nl, . . . ,  nk) axe con- 
stants depending only on n l , . . . , n k , n  and k. The immersion is called 
idea l  if it satisfies the equality case of the above inequality identically for 
some k-tuple ( n l , . . .  ,nk).  In this paper, we first prove that  every ideal 
Einstein immersion satisfying n ~ n l  +" �9 �9 + nk + 1 is totally geodesic, and 

that  every ideal conformally fiat immersion satisfying n > nl +.. .  +nk +2 
and k > 2 is also totally geodesic. Secondly we completely classify all 
ideal semi-symmetric hypersurfaces in real space forms. 

1. I n t r o d u c t i o n  and main  t h e o r e m s  

L e t  M b e  a n  n - d i m e n s i o n a l  R i e m a n n i a n  m a n i f o l d .  D e n o t e  b y  k(Tr) t h e  s e c t i o n a l  

c u r v a t u r e  of  M a s s o c i a t e d  w i t h  a p l a n e  s e c t i o n  ~ C Tp(M) ,  p E M .  For  a n y  
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orthonormal basis e l , . . . ,  en of the tangent space Tp(M), the scalar curvature T 

at p is defined to be 

T ( p ) = ~ - ~ K ( e i A e j ) ,  l <_i,j<_n. 
i#j 

Let L be a subspace of TpM of dimension r _> 2 and {e l , . . . ,  er} an orthonormal 

basis of L. The scalar c u r v a t u r e  7(L) of the r-plane section L is defined by 

T(L)= ~ -~K(e~Ae3) ,  l~_a ,  3 ~ r .  
a#3 

For any integer k > 0, denote by kO(n, k) the finite set consisting of unordered 

k-tuples ( n l , . . . ,  nk) of integers ni _> 2, satisfying ni < n and nl + . . .  + nk <_ n. 

Then let ~(n) be the union [-Jk>0 ~(n,  k). 
For each k-tuple ( n l , . . . , n k )  E ~(n), B. Y. Chen introduced in [1, 2, 3] a 

Riemannian invariant 5 ( n l , . . . ,  nk) by 

(1.1) 2 ( ~ ( n l , . . . ,  nk) = 7- - i n f { T ( L m )  + - . .  + r ( L k ) } ,  

where at each point p E M n, L1 , . . . ,  Lk run over all k mutually orthogonal sub- 

spaces of TpM such that d imLj  = nj, j = 1 , . . . ,  k. And B. Y. Chen also proved 

in [3] the following optimal relationship between the invariants 5(n1, . . . ,  nk) and 

the squared mean curvature H 2 for an arbitrary submanifold in a real space form. 

THEOREM A: Let M n be an n-dimensional submanifold in a real space form 

Rm(e) of constant curvature e. Then for each k-tuple ( n l , . . . , n k )  E ~(n),  we 

have 

(1.2) ~ ( n l , . . . ,  nk) ~_ c(nl . . . .  , nk)H 2 + b (n l , . . . ,  nk)~. 

The equality case of inequality (1.2) holds at a point p E M if and only if there 

exists an orthonormal basis {e i , . . . ,  era} at p, such that the shape operator of M 

in Rm(~) at p with respect to {e l , . . . ,  era} takes the form 

) (1.3) Ar "" .. = , r = n + l ,  . ,m ,  
Ark 

ltrI 

where I is an identity matrix and A~ is a symmetric n j x  nj submatrix satisfying 

(1.4) t rd~  . . . . .  trA~ = #r, 
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and c ( n l , . . . ,  nk) and b ( n l , . . . ,  nk) are positive constants defined by 

n2(n + k - 1 - ~-'~nj) 
c ( n l , . . . , n k )  = 2(n  + k - n5) (1.5 - 1) 

and 

(1.5 - 2) 
1 

1) ~ ~ n j ( n j  1)). b ( n l , . . . ,  nk) = -~(n(n -- -- 

An isometric immersion in a real space form is called ideal  in the sense of [3] if 

it satisfies the equality case of inequality (1.2) identically for some k-tuple, that  

is 

(1.6) 5 ( n l , . . . ,  nk) = c(nl , .  . . ,  nk)H 2 + b(nl, .  . . ,  nk)e. 

Ideal immersions associated with the simplest 1-tuple, namely (2) C ~(n), 

have been studied deeply in the last few years and many interesting results have 

been obtained (see for instance [1, 4, 5, 7]). But little is known concerning ideal 

immersions associated with a general k-tuple ( n l , . . . ,  nk) E ffJ(n) except those of 

immersions in a complex space form (see [2]). Dillen, Petrovic and Verstraelen (cf. 

[7]) have completely classified the ideal Einstein, ideal conformally fiat and semi- 

symmetric immersions associated with (2) E ff/(n). In this paper we consider 

such ideal immersion associated with the general k-tuple ( n l , . . . , n k )  E kO(n). 

For convenience denote by sk = nl + ' "  + nk (and sometimes write s). 

First we have the following theorems about ideal Einstein and conformally fiat 

immersions. 

THEOREM 1: Every ideal immersion in real space forms satisfying n ~ s Jr 1 is 

Einstein i f  and only if  it is totally geodesic. 

THEOREM 2: Every ideal immersion in real space forms satisfying n >_ s + 2 and 

k >_ 2 is conformally fiat if  and only if  it is totally geodesic. 

A Riemannian manifold is called s e m i - s y m m e t r i c  (cf. [8]) if it satisfies R-R = 

0 (see section 2 below). The second purpose of this paper is classifying all ideal 

semi-symmetric hypersurfaces of real space forms. 

THEOREM 3: Let M n be an ideal immersion in a Euclidean space E n+l. Then 

M is semi-symmetric if  and only if  M is locally congruent to an open part of one 

of the following hypersurfaces: 

(1) a totally geodesic hyperplane E ~, 

(2) an (n - 2)-ruled minimal hypersurface, 
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(3) a standard n-sphere S ~, 

(4) an elliptic hypercone C ~, 

(5) the product of  a standard l-sphere S I and an (n - l)-dimensional a///ne 

subspace E n-l  and I >_ 2, 

(6) the product of  an l-dimensional elliptic hypereone C l and an (n - 1)- 

dimensional affine subspace E n-t  and I >_ 2, 

where C n is the elliptic hypercone o r E  n+x (for definition see [6]), and S t and C t 

are the hypersphere and hypercone in E l+l respectively; and E n-t  is a Euclidean 

subspace o r E  n+l orthogonal to E t+l. 

THEOREM 4: Every ideal immersed hypersurface M in a sphere sn+l(1) is semi- 

symmetr ic  i f  and only i f  M is locally congruent to a hypersphere Sn(c) or a 

Riemannian isoparametric torus St(a) • S~-t(b) for suitable a and b where a 2 § 

b 2 - - 1  a n d l = l , . . . , n - 1 .  

THEOREM 5: Every ideal immersed hypersurface in a hyperbolic space H n + 1 (_  1) 

is semi-symmetric i f  and only i f  M is locally congruent to an umbilical hyper- 

surface or an isoparametric hypersurface Sl(a) • Hn-t (b)  for suitable a and b 

satisfying a 2 - b 2 = - 1 ,  and  I = 1 , . . . ,  n - 1. 

2. Some simple lemmas 

Let x: M n --+ Rm(e) be an isometric  immers ion of a real space form of constant  

curvature  e. For any k- tuple  ( n l , . . . , n k )  E 6Y(n), denote by Ii the index set 

{ n l + . . . + n i _ l + l , . . . , n l + . . . + n i } , i =  1 , . . . , k  and s + l  < a , ~ , . . . _ <  n 

where s = nl + . . .  + nk. The  Riemannian  curvature  tensor R is defined by 

R ( X ,  Y )  = V x V v  - V v V x  - V[x,v] where V is the Levi-Civi ta  connection of 

M.  Denote  by H,  h and Ric the mean  curvature,  the second fundamenta l  form, 

and Ricci tensor  respectively; hi~j is the component  of h. 

I f  we choose en+l parallel  to the mean  curvature  vector,  Theorem A can be 

rewri t ten  as 

LEMMA 2.1: Let x: M n --+ Rm(e) be an isometric immersion in a real space form 

of  constant curvature E. Then for each k-tuple (n l , . .  ., nk) E q~(n), we have (1.2) 

and the equality case of(1.2)  holds i f  and only i f  there exists an orthonormal basis 
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{e l , . . . ,  era} such that the shape operator of M takes the form 

(2.1) 
' a l  / 'A~ 

"o. " . .  

An+ I = as At = Ark 
It 

It 

0 "'. 0/ 
satisfying ~ i e h  ai = It, tr A~ = 0, for all t = n + 2 , . . . ,  m, and i = 1 , . . . ,  k. 

LEMMA 2.2: The sectional curvatures of M are 
m 

Kit  K ( e  i A e t )  c Jr aia s Jr E t t _ (h t ~2~ = = {hi ihj j  t iS, J, 
t=n+2 

m 

Kit  Is A ej)  ---- ~ -b aia t A- E t t = hiiht j  , i E h ,  j E It ,  
t=n+2 

K i n = K ( e i A e a ) = e + a i i t ,  i E I i ,  s + l < _ a < n ;  

Kaz  = K(e~ A e~) = e + #2. 

i, j E Ii; 

I~ # It; 

Proo~ 

LEMMA 2.3: The Ricci curvatures of M are 

(2.2) Ric(ei, ei) - (n - 1)c + (n - s + k)ai# - {a~ + 

for i E Ii, and 

The Lemma is an immediate result of the Gaussian equation and (2.1). 

m 

(h t ~2 
E , i S ,  j ,  

t=n+2,jEll 

(2.3) 
Proof'. 

Ric(e, ,  e~) = (n - 1)r + (n - s + k - 1)# 2. 

By Lemma 2.2 and (2.1) we have 

Ric(ei, ei) = K i l  + " "  -4- Kis -4- ~ Kia  
a=s+l 

= ( n - 1 ) e + a i {  E a j + ( k - 1 ) p + ( n - s ) # }  
iCjEIi 

t=n+2 i~jEI i 
T ~  

2 Z \ ~3 ! 

t-=n+2,jEli 
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which implies (2.2); (2.3) is similar. 

A Riemannian manifold M is called s e m i - s y m m e t r i c  (cf. [8]) if 

(R(X, V)R)(U, v ) w  = o 

for all X, Y, U, V, W E T M ,  where R(X,  Y ) R  is defined by 

(2.4) 

(R(X, V) . R)(U, V)W = R(X, Y)(R(U, V)W) 

- R(R(X, V)U, V)W - R(U, R(X, Y)V)W - R(U, V)(R(X, Y)W). 

Semi-symmetry is a proper generalization of local symmetry (VR -- 0). 

The Gaussian equation of an isometric immersed hypersurface x: M ~ -+ 

R~+1(r in a real space form can be written as 

(2.5) 
R(X,  Y ) Z  = <  Y, Z > X -  < X, Z > Y+  < AY, Z > A X -  < AX,  Z > AY. 

Now we can choose a local orthonormal frame { e l , . . . ,  en+l} such that  Aei = 

z~iei~ i = 1 , . . . ,  n. 

LEMMA 2.4: An isometric immersed hypersurface x: M n --4 R'~+1(e) is sere/- 

symmetric i f  and only if  

(2.6) Ai (A j  - ,~k)(e + ~Xj~Xk) = 0 

where i, j and k are distinct. 

Proofi By a direct calculation we have by (2.4) and (2.5) that 

(R(ej, ek)R)(ei, ek)ej = -Ai(Aj - Ak)(r 4- AjAk)ei, 

which implies (2.6). The converse also holds because (R(X,  Y)R)(U,  V ) W  - 0 if 

the distinct number of vectors X, Y, U, V and W is different from 3. 

J. Deprez proved the following local classification theorem (in [8]) of hyper- 

surfaces immersed in a Euclidean space E n+l. 

LEMMA 2.5: Let M n be an n-dimensional Riemannian manifold which is iso- 

metrically immersed in E n+l, such that rankA _> 3 at some point. Then M n is 

semi-symmetric i f  and only i f  M ~ is locally congruent to an open part of one of 

the following hypersurfaces: 

(1) a hypersphere S n, 

(2) an elliptic hypercone C n, 
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(3) the product of a standard l-dimensional sphere  S t and an ( n - l  )-dimensional 
a/fine subspace E n-l and I _> 3, 

(4) the product of an I-dimensional hypercone C l and an (n - l)-dimensional 
a/fine subspace E n-I and I >_ 3, 
where C l , S l and E n-l are similar to Theorem A. 

3. P r o o f  o f  T h e o r e m  1 

If  M is an ideal Einstein immersion,  then Ric = ~g, ~ where g is the metr ic  tensor 

of M.  So by (2.2) and (2.3) we have 

( n -  s + k )a i# -  {a2 § ~ (h~j)2} = (n - s + k - 1 ) #  2. 
t : n + 2 , j E I 1  

By s u m m a t i o n  in I1 one finds f rom (2.1) 

m 

(3.1) (n . . . . .  s + k ) ,  2 nl(n s + k  1 ) ,  2 E a ~ +  E (hiJ)t 2. 
JEll t=n + 2,i,j E l l  

Equat ion  (3.1) holds for n ~ , . . . ,  nk, too. So by s u m m a t i o n  we have 

(3.2) E a ~  + (h~j) 2 = [(n - s + k)(k - s) + s ] ,  2. 
i=1 t=n+2, i , jEI~ , , l (a (_k ,  

Now we claim tha t  f ( k, s) = (n -s+k  )( k - s )+s  = s2-(n+ 2k-1)s+( k2 +nk ) < 
0 for any k >_ 1 and 2 < s < n -  1. 

By  definition for any k- tuple  (nl , . . . ,  nk) E ~ ( n ) ,  k = 1 when s = 2 and n >_ 3. 

Moreover 2 < s < n - 1, and k < [ ~ ] .  An easy calculat ion shows tha t  

f(k, 2) = f ( 1 , 2 )  = 3 -  n < O, 

k ( n - 1  ) k ( n -  3) < 0 ,  f ( k , n - 1 ) = k ( k §  \ ~ + 2 - n -  ~ _  

which implies f(k,  s) <_ 0 by the p roper ty  of quadric functions. By  this claim, 

(3.2) indicates tha t  M is to ta l ly  geodesic. The  converse holds trivially. This  

completes  the proof  of Theo rem 1. 

Remark: When  c = 0, k = 1 and n l  = 2, Theo rem 1 is ob ta ined  by Dillen, 

Petrovic  and Verstraelen in [7]. 
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4. Ideal conformally fiat immersion 

The Weyl's conformal curvature tensor 

manifold M is defined by 

C of an n-dimensional Riemannian 

(4.1) 

1 
C~jkt =Rijkl -- n---L-~{RikSjl -- RitSjk + 5ikRjl -- 5iiRjk } 

T 
+ (n - 1)(n - 2) (SikSjt -- 5ilSjk), 

with respect to an orthonormal frame field, where Rik = Ric(e~,ek). 

dimension n _> 3, M is conformally flat if and only if C = 0. 

Next we give the 

For 

Proof  of  Theorem 2: For i, j E 11 we have by C~j~j = O, 

1 T 
Kij  - - - { R i i  + R j j }  + ~- O. 

n -  2 ( n -  1 ) ( n -  2) 

By Lemmas 2.2 and 2.3 we get 

(4.2) 

) g,j + ~ aj + ~ [(h~,) 2 + (h)y] 
t,lEI1 

n - s + k (ai + aj)l t  T 2(n -- 1)r = O. 
n - 2  + ( n - 1 ) ( n - 2 )  n - 2  

Similarly, using Caz~Z = 0 and Lemmas 2.2 and 2.3 we have 

r _ n + 2 k -  2s#2 2 ( n -  1)r 
(4.3) r  ( n - 1 ) ( n - 2 )  ~ : 2  + - -  " n - 2  

Inserting (4.3)into (4.2) we obtain 

(4.4) 

1 {a~+a2+ E [(h~')2+ (h~ ')2]} 
t , lEll  

n -  s + k (a ~ n + 2k - 28#2 
n : 2  + a j ) # +  n - - - 2  - r  

Also, Ciaia = 0 together with Lemmas 2.2 and 2.3 gives 

(4.5) 

s - k - 2  n - s + k - l p 2  1__~{ } 
n -  2 a i #  n -  2 + n a2 + E ( h ~ / ) 2  

t,lEI1 

r 2 ( n  - 1) 
+ + r  - - r  

( n  - 1 ) ( n  - 2 )  n - 2 
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Inserting (4.3) into (4.5) we have 

(4.6) n-1 {2 E } s - k - 2  s - k - l p 2  a~ + (h~/) 2 + - -  ai# = O. 
n - 2  n - 2  

t,lEI1 

For another j C 11, (4.6) also holds. By summation we get 

(4.7) 

Combination of (4.4) and (4.7) gives 

(4.8) (ai + at)# + ~ - Kit - #2 = O, 

1 { a2+ 2 } 
n - 2 ~ at + E [(h~t)2 + (h}/)2] 

t,lEll 

s -  k -  2 2 ( s -  k -  1)#2 
-b (a i q- aj)lA -.~ O. 

n - 2  / / - 1  

Vir  j E 11. 

(4.6) holds for all i E 11, so by summation in I1 we get 

(40  1{ }= n - 2  E a i  + E (h~J)2 n l ( s - k - 1 ) - ( s - k - 2 ) , 2 .  
ieI, t,i,tell n---2- 

(4.9) also holds for any ni, so by summation for//i we have 

1 { L  2 E t 2 } a i  + (hij) = s ( s - k - 1 ) - k ( s - k - 2 ) # 2  
n - 2 i=1 t,i,j n -- 2 ' 

which implies by (2.1) that 

(4.10) IIhH 2 = In + ( s -  k ) ( s -  k -  2)]# 2 . 

Now (4.8) holds for any Kij and i r j in 11; then by summation we have 

2 T ( / 1 )  ---- E Ki j _ nl(n12 - 1) c + ( n l  -- 1)(22 -- //1) 2. 

l~_i(j~_nl 

The above equation also holds for any ni, thus by summation again 

I ~ T(Li)  = l k _ 2 } # 2 .  (4.11) 2 5 E n i ( n i - 1 ) x +  { 3 s - 2 k - E n i  
i=1 i=l 

Because M is an ideal immersion, then from (1.1), (1.5), (1.6) and (4.11) we know 
that 

2 2 T : {(n 2 -- 2ns + 2 n k -  n) + (k 2 + s 2 -  2 k s + 4 s -  3 k -  E n i ) } #  

(4.12) + n(n - 1)c. 
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On the other hand, by the Gaussian equation and (4.10) we have 

( 4 . 1 3 )  T = ~ ( ~  - 1)~  + [(n2 - 2 n s  + 2 n k  - ~ )  + (2~ - 2 k ) ] ,  ~ 

Here we have used 
H 2 _  ( n - s n  u k )  2 # 2  

n 2 

Combination of (4.12) and (4.13) gives 

k 

(4.14) k - s )  2 + 2 s - k -  n i /~ = 0 .  
i--1 "J 

k 2 Then w(k) > 0 for all LEMMA 4.1: Let  ~o(k) = (k - s) 2 + 2s - k - ~ i = l  hi" 

k > 2 and n >_ s +  2. 

P r o o f  (Using induction): First note that  the Lemma holds for k = 2, 

w(2) = 2(nln2 - nl  - n2 + 1) = 2(fi 1 - -  1 ) ( n  2 --  1) > 0. 

We assume the lemma holds for any k; then for k + 1, 

k + l  

w ( k + l )  = ( k +  1 -  sk+l) 2 + 2 s k + l -  ( k + l ) -  ~ n ~  
i-=1 

k 

=[(k - sk) - (nk+l -- 1)] 2 + 2sk + 2nk+, -- k - 1 - Z n2 - n2+ I 
i = I  

k 

= [ ( k  - sk)  2 + 2sk  - k - ~ . ~ 1  
i=1  

n u [ ( t / k +  1 - -  1)  2 - -  2 ( k  - 8 k ) ( n k + l  - -  1) - -  ( n 2 + l  -t- 1 - -  2 n k + L ) l  

= ~ ( k )  + 2 (~k  - k l ( ~ k + l  - 1) > 0. 

Thus the lemma follows. 

By Lemma 4.1, (4.14) implies that  # = 0. Now by (4.10), Ilhll 2 = 0, i.e., M is 

totally geodesic. The converse is obvious. This completes the proof of Theorem 2. 

From the proof we know that when k = 1, (4.13) becomes 

7- = ( n -  1)(n + 2 -  2nt )p  2 + n ( n -  1)e. 

Thus we have immediately the following corollaries. 
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COROLLARY 4.2: Let k = 1, n _> n l  + 2 and n ~ 2(nl  - 1). Then when 

T = n (n  -- 1)~, M is ideal conformally fiat i f  and only i f M  is totally geodesic. 

COROLLARY 4.3: For k = 1, n l  = 2, M is ideal conformally fiat i f  and only i f  

g12 ~ c. 

R e m a r k  4.4: When  k > 1 and s -- n + 1, by a similar calculation as in the proof  

of Theorem 2 above we obtain 

k 

s 2 [ 2 s 2 _ 2 k ~ n ~ + ( k 2 + k _ 2 ) s _ ( k  2 k ) ] p 2 + s ( s + l ) r  7 " - -  k 
82 --  E i = I  T~i i=1 

Let g ( n l , . . . ,  nk) = 2s 2 - 2k )--~k=l n 2 + (k 2 + k - 2)s - (k 2 - k) r 0. It  is easy 

to see tha t  if T = n (n  -- 1)r then M is ideal conformally flat if and only if M is 

total ly geodesic. 

5. I d e a l  s e m i - s y m m e t r i c  h y p e r s u r f a c e s  

Proo f  o f  Theorem 3: If  rank A > 3 at some point,  then L e m m a  2.5 says tha t  

M is semi-symmetric  if and only if M is one of (3)-(6) in Theorem 3, where 

l > 3 in (5) and (6). First  note tha t  any ideal immersion is one of the above 4 

kinds of hypersurfaces if it is semi-symmetric.  Secondly, the above 4 immersed 

hypersurfaces are all ideal immersions. Next we consider the case rank A < 2. 

If  rank A -- 0, M is the total ly geodesic hyperplane. 

If  rank A = 1, the case doesn ' t  happen because M is ideal. 

I f  rank A = 2, we assume ai ~ O, aj ~ 0 and i ~ j .  First  note tha t  we can 

assume i, j E I1. Otherwise, if i C I1 and j E / 2 ,  we have a~ = aj -~ #. When  # is 

constant ,  M is case (5) for I = 2, and when p r constant ,  M is case (6) for I = 2. 

Now for i, j E I1, ai + aj = O. So M is an (n - 2)-ruled minimal hypersurface. 

The  converse also holds. This completes the proof  of Theorem 3. 

In  order to prove Theorems 4 and 5, we give the following lemmas. 

LEMMA 5.1: Let  x: M n -+ Rn+l (g  ~ 0) be a minimal  hypersurface in the space 

form with non-zero constant curvature ~. Then 

(1) when c --- 1, M is semi-symmetr ic  i f  and only i f  M is totally geodesic or 

has two distinct principal curvatures 

A l =  and A 2 =  n - 1  
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with multiplicities l and n - I, respectively; 

(2) when ~ = - 1 ,  M is semi-symmetr ic  i f  and only i f  M is totally geodesic. 

Proof." If M is not  total ly geodesic, there exist two non-zero principal curvatures 

such tha t  )~1 r As. By (2.6), 

(5.1) AI(A2 - Ai)(e + A2Ai) = 0 

and 

(5 .2)  )t2(A1 _ Ai ) (  ~ 2f_ )~IAi) = 0, 

for any i r 1, 2. Obviously hi is either A~ or A2. We assume tha t  the multiplicities 

of A1 and A2 are 1 and n - l, respectively. Then  

(5.3) l~, + (n - I)~2 = 0. 

Moreover, by (5.1) and (5.2) we have 

(5.4) A1A2 + E =- O. 

By (5.3) and (5.4) we have 

n - l  I 

Thus we have 

,~1= and A 2 = -  f o r e - - 1 .  

For e = - 1  this ease doesn ' t  happen.  Thus  Lemma 5.1 follows. 

LEMMA 5.2: Let  x: M '~ ~ Rn+t (e  r O) be non-minimal  and non-umbilical semi- 

symmetr ic  hypersurfaces. Then M is ideal i f  and only i f  M has two constant 

principal curvatures al and a2 such that  ala2 + e = O. 

Proof: Case (1), n >_ s + 1. 

By assumption # ~ 0. If there is some ai = 0 (for instance al  = 0), then by 

(2.6), # (a l  - ai)(e + alai)  = - # a i e  = 0 for i r 1, which implies ai = 0 for all i. 

It contradicts  p ~ 0. Now we have ai ~ 0 for all i C { 1 , . . . ,  s}. Similar to the 

proof  of Lemma 5.1, ai = # or ai = - r  Without  loss of generality we assume 

tha t  the multiplicity of eigenvalue p in the submatr ix  A1 is 11. By tr  A1 = #, we 

have 

( n l  - -  / 1 ) ( - - ~ / ~ )  ~- l l ~  ~-- 



Vol. 132, 2002 CONFORMALLY FLAT AND SEMI-SYMMETRIC IMMERSIONS 

which implies tha t  #2 = (nl  - 11)/(11 - 1), Note tha t  l l r  1. Hence 

and 
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l ~ n ~ _  1 nl  - ll and ai = - for e = 1, I1 > 1, 
# =  1 ll 

# = x/~ 1 and ai = 1 / v f ~  for s -- - 1 ,  11 = 0. 

The  discussion for n 2 , . . . ,  nk is similar and n 1 ---- r t  2 . . . . .  nk. 

Case (2), n = s and k > 2. 

Similar to case (1) none of the principal  curvatures  is zero and only two, say 

a l  and a2, are different and satisfy 

(5.5) ala2 + ~ = O. 

Now we consider the two submat r ixes  A1 and A2. Wi thou t  loss of generali ty 

we assume A1 and A2 take the following forms: 

A1 -- ".. , A2 = ".. , 

a2Inl -I1 a2In~-12 

for some integral  functions 11 and 12. Then  by assumpt ion  

l la l  + (nl  - ll)a2 = 12a1 + (n2 - 12)a2, 

(5.6) (/1 - / 2 ) a l  ~- [(/t2 - n l )  + (/1 - / 2 ) ] a2 .  

Let I = 11 - 12. By (5.5) and (5.6) we get 

(5.7) l ( - c  - a 2) = (n2 - n l ) s ,  

which implies tha t  l is a constant  integer because a l  is a continuous function. If  

l r 0, it follows f rom (5.7) t ha t  a l  is constant  and so is a2. I f / =  0, then ll = 12. A 

similar discussion applies to n 3 , . . . ,  nk and we conclude tha t  the multiplicit ies of 

a l  and a2 are all n / 2  where n is even in this case. Let  D(a l )  = s p a n { o , . . . ,  en/2 } 

and D(a2)  = s p a n { e ~ + l , . . . , e n }  be the curvature  dis t r ibut ions of a l  and a2, 

respectively. Obviously n / 2  > 1. I t ' s  well known tha t  the principal  curvatures  

are constant  along the integral  manifolds of their  corresponding distr ibutions.  So 

ei(a~) = 0 f o r i  C { 1 , . . . , n / 2 }  a n d e i ( a 2 )  = 0  f o r j  E { n / 2 + l , . . . , n } .  Thus  

0 = ei(ala2 + ~) = ei(al)a2 + ale~(a2) = aiei(a2),  which implies tha t  ei(a2) = 0 

for i E { 1 , . . . ,  n /2}  and so a2 is constant .  By (5.5), a l  is constant ,  too. This  

completes  the proof  of the Lemma.  
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Proof  of  Theorems 4 and 5: By Lemmas 5.1 and 5.2, we know M is an iso- 

parametric hypersurface with at most two distinct principal curvatures. Thus 

by a famous classification theorem of Caftan,  if M is ideal semi-symmetric,  it 

must be the hypersurfaces described in Theorems 4 and 5. Conversely, the above 

hypersurfaces are also ideal semi-symmetric immersions for suitable a and b. So 

Theorem 4 and Theorem 5 follows. 
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