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ABSTRACT

Recently, B. Y. Chen introduced a new intrinsic invariant of a mani-
fold, and proved that every n-dimensional submanifold of real space
forms R™(e) of constant sectional curvature ¢ satisfies a basic inequality
§(n1,...,ng) < c(ny,...,ng)H? + b(ny,...,nt)e, where H is the mean
curvature of the immersion, and ¢(n1,...,n) and b(n1,...,ng) are con-
stants depending only on nj,...,ng,n and k. The immersion is called
ideal if it satisfies the equality case of the above inequality identically for
some k-tuple (n1,...,ng). In this paper, we first prove that every ideal
Einstein immersion satisfying n > n1+- - -+n, +1 is totally geodesic, and
that every ideal conformally flat immersion satisfying n > n1+---+ng+2
and k > 2 is also totally geodesic. Secondly we completely classify all
ideal semi-symmetric hypersurfaces in real space forms.

1. Introduction and main theorems

Let M be an n-dimensional Riemannian manifold. Denote by k(r) the sectional
curvature of M associated with a plane section 7 C T,(M), p € M. For any
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orthonormal basis e, ..., e, of the tangent space T,(M), the scalar curvature 7
at p is defined to be

() =Y K(eiAhej), 1<ij<n.
i#]
Let L be a subspace of T, M of dimension r > 2 and {ey, ..., e, } an orthonormal
basis of L. The scalar curvature 7(L) of the r-plane section L is defined by

(L) = ZK(ea/\eg), 1<a,B<T.
a#B

For any integer k > 0, denote by ¥(n, k) the finite set consisting of unordered
k-tuples (ny, ..., ng) of integers n; > 2, satisfying nqy < nand ny +---+ng < n.
Then let ¥(n) be the union |J,, ¥(n, k).

For each k-tuple (nl,...,nk)_e U(n), B. Y. Chen introduced in [1, 2, 3] a

Riemannian invariant d(ny,...,nx) by
(1.1) 26(ny1,...,nk) =7 —inf{r(L1) + - -+ 7(Lx)},

where at each point p € M™, L,,..., Ly run over all ¥ mutually orthogonal sub-
spaces of T, M such that dimL; = n;, j = 1,...,k. And B. Y. Chen also proved
in [3] the following optimal relationship between the invariants é(n1,...,nx) and
the squared mean curvature H? for an arbitrary submanifold in a real space form.

THEOREM A: Let M™ be an n-dimensional submanifold in a real space form

R™(¢) of constant curvature . Then for each k-tuple (ni,...,n;) € ¥(n), we
have
(1.2) 8(ny,...,nx) <e(na,...,ng)H? 4+ b(ny,...,ng)e.

The equality case of inequality (1.2) holds at a point p € M if and only if there
exists an orthonormal basis {ey, ..., e} at p, such that the shape operator of M
in R™(e) at p with respect to {ey,...,em} takes the form

(1.3) A, = , r=n+1,...,m,
A
prd

where I is an identity matrix and A7 is a symmetric n; X n; submatrix satisfying

(1.4) trA] =---=tr A, = pr,
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and ¢(ny,...,ng) and b(ni,...,ng) are positive constants defined by
n(n+k—-1-3 n;)
1.5~ - =
(L5-1) e ) = T TS0
and
1
(1.5 - 2) b(ny,...,ng) = §(n(n—1)—znj(nj - 1).

An isometric immersion in a real space form is called ideal in the sense of [3] if
it satisfies the equality case of inequality (1.2) identically for some k-tuple, that
is

(1.6) 8(ny,...,nk) = c(ny,...,ng)H2 4+ b(ny, ..., n)e.

Ideal immersions associated with the simplest 1-tuple, namely (2) € ¥(n),
have been studied deeply in the last few years and many interesting results have
been obtained (see for instance [1, 4, 5, 7]). But little is known concerning ideal
immersions associated with a general k-tuple (ny,...,ng) € ¥(n) except those of
immersions in a complex space form (see [2]). Dillen, Petrovic and Verstraelen (cf.
[7]) have completely classified the ideal Einstein, ideal conformally flat and semi-
symmetric immersions associated with (2) € ¥(n). In this paper we consider
such ideal immersion associated with the general k-tuple (ny,...,nx) € ¥(n).
For convenience denote by s; = nj +--- + n; (and sometimes write s).

First we have the following theorems about ideal Einstein and conformally flat
immersions.

THEOREM 1: Every ideal immersion in real space forms satisfying n > s+ 1 is
Einstein if and only if it is totally geodesic.

THEOREM 2: Every ideal immersion in real space forms satisfying n > s+ 2 and
k > 2 is conformally flat if and only if it is totally geodesic.

A Riemannian manifold is called semi-symmetric (cf. [8]) if it satisfies R-R =
0 (see section 2 below). The second purpose of this paper is classifying all ideal
semi-symmetric hypersurfaces of real space forms.

THEOREM 3: Let M™ be an ideal immersion in a Euclidean space E™t!, Then
M is semi-symmetric if and only if M is locally congruent to an open part of one
of the following hypersurfaces:

(1) a totally geodesic hyperplane E™,

(2) an (n — 2)-ruled minimal hypersurface,
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(3) a standard n-sphere S™,

(4) an elliptic hypercone C™,

(5) the product of a standard l-sphere S' and an (n — l)-dimensional affine
subspace E"~! and [ > 2,

(6) the product of an l-dimensional elliptic hypercone C' and an (n - 1)-
dimensional affine subspace E"~! and | > 2,

where C™ is the elliptic hypercone of E™*! (for definition see [6]), and S* and C"
are the hypersphere and hypercone in E'*! respectively; and E™~* is a Euclidean
subspace of E™*! orthogonal to E't1.

THEOREM 4: Every ideal immersed hypersurface M in a sphere S"+1(1) is semi-
symmetric if and only if M is locally congruent to a hypersphere S™(c) or a
Riemannian isoparametric torus S'(a) x S”~!(b) for suitable a and b where a® +
b>=1landl=1,...,n—1.

THEOREM 5: Every ideal immersed hypersurface in a hyperbolic space H"t1(~1)
is semi-symmetric if and only if M is locally congruent to an umbilical hyper-
surface or an isoparametric hypersurface S'(a) x H"~!(b) for suitable a and b
satisfying a> —b* = —-1,andl =1,...,n— 1.

2. Some simple lemmas

Let z: M™ — R™(g) be an isometric immersion of a real space form of constant
curvature €. For any k-tuple (ny,...,ng) € ¥(n), denote by I; the index set
{ni+---+n+1,...,m+---+n},i=1,...,kand s+1 < a,83,... <n
where s = n; + -+ 4+ ng. The Riemannian curvature tensor R is defined by
R(X,Y) = VxVy — VyVx — V|x,y] where V is the Levi-Civita connection of
M. Denote by H, h and Ric the mean curvature, the second fundamental form,
and Ricci tensor respectively; h;‘j is the component of h.

If we choose e,y parallel to the mean curvature vector, Theorem A can be
rewritten as

LEMMA 2.1: Let x: M"™ — R™(¢) be an isometric immersion in a real space form
of constant curvature £. Then for each k-tuple (ny,...,nx) € ¥(n), we have (1.2)
and the equality case of (1.2) holds if and only if there exists an orthonormal basis
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{e1,...,em} such that the shape operator of M takes the form

(2.1)
3]

An+1 =

7

satisfying ) ;c; ai = p, tr A} =0, forallt=n+2,...,m,andi =1,...,k.

LEMMA 2.2: The sectional curvatures of M are

Kij =K(€i/\€j) =€+aiaj + Z {ht
t=n+2

Kij = K(ei/\ej) :€+aiaj + Z ht.h

i
t=n+2

Kia:K(ei/\ea)=6+aiu, 1€ I,
Kos=K(eq Neg) = ¢+ p.

t t \2 L .
iihsy — (R}, 4,5 €I

i €L, jel ILi#l;

s+1<adln;

211

Proof: The Lemma is an immediate result of the Gaussian equation and (2.1).

LEMMA 2.3: The Ricci curvatures of M are

(2.2)  Ric(eq, &) = (n — e + (n— 5+ K)aips — {a? + Xm: (hi;)®

fori € I;, and

)
t=n+2,j€l;

(2.3) Ric(ens€a) = (R = De+ (n— s+ k —1)u?.

Proof: By Lemma 2.2 and (2.1) we have

Ric(es, ) =Ka +--+ Kis + »_ Kia

a=s+1

=(n—1)s+ai{ Z a; +

i#jel;

+ Em: h§i< > -

t=n+2 itjel;

m
=(n—1)e+ (n—s+k)ap—a? - Z (hﬁj)z,
n+2,j€l

(k- u+ (n—S)u}

S (1)

i#JEL
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which implies (2.2); (2.3) is similar.
A Riemannian manifold M is called semi-symmetric (cf. [8]) if

RX,Y)R)U, V)W =0
for all X,Y,U,V,W € TM, where R(X,Y)R is defined by

(R(X,Y) - R)(U,V)W = R(X,Y)(R(U, V)W)
(24) - RR(X,Y)U,V)W — R(U, R(X,Y)V)W — R(U, V)(R(X,Y)W).

Semi-symmetry is a proper generalization of local symmetry (VR = ().

The Gaussian equation of an isometric immersed hypersurface z: M™ —
R™"*1(¢) in a real space form can be written as
(2.5)

RX,YVYZ=<Y,Z2>X-<X,Z>Y+ < AY,Z> AX~- < AX,Z > AY.

Now we can choose a local orthonormal frame {ey,...,e,41} such that Ae; =
/\,-e,-, 1= 1,...,n.

LEMMA 2.4: An isometric immersed hypersurface z: M™ — R™*1l(¢) is semi-
symmetric if and only if

(2.6) Ai(Aj = M)+ AA) =0
where i, j and k are distinct.

Proof: By a direct calculation we have by (2.4) and (2.5) that
(Rlejs ex)R)(eirer)e; = —As(Aj — Ak) (e + AjAe)es,

which implies (2.6). The converse also holds because (R(X,Y)R}(U, V)W =0 if
the distinct number of vectors X,Y,U,V and W is different from 3.

J. Deprez proved the following local classification theorem (in [8]) of hyper-
surfaces immersed in a Euclidean space E™*1,

LEMMA 2.5: Let M™ be an n-dimensional Riemannian manifold which is iso-
metrically immersed in E™t1, such that rank A > 3 at some point. Then M™ is
semi-symmetric if and only if M™ is locally congruent to an open part of one of
the following hypersurfaces:

(1) a hypersphere S™,

(2) an elliptic hypercone C™,
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(3) the product of a standard l-dimensional sphere S' and an (n—1)-dimensional
affine subspace E™*~' and [ > 3,

(4) the product of an I-dimensional hypercone C' and an (n — I)-dimensional
affine subspace E"~! and [ > 3,
where C* , S* and E™~" are similar to Theorem A.

3. Proof of Theorem 1

If M is an ideal Einstein immersion, then Ric = Lg, where g is the metric tensor
of M. So by (2.2) and (2.3) we have

m
(n—s+k)aiu—{af+ Z (hﬁj)2}=(n—s+k—1)u2.
t=n+2,j€l;
By summation in I; one finds from (2.1)
m
1)  (-st+hp-mm-s+k-DpP=) af+ > (A~
i€l t=n+2,3,3€l

Equation (3.1) holds for ng,...,ny, too. So by summation we have

m

(3.2) > a4+ > (h)* ={(n = s+ k)(k — s) + s]u’.
i=1 t=n+2,i,j€1,,1<0 <k,

Now we claim that f(k, s) = (n—s+k)(k—s)+s = s2—(n+2k—1)s+(k®+nk) <
Oforanyk>1land2<s<n-1

By definition for any k-tuple (ny,...,n) € ¥(n), k =1whens=2and n > 3.
Moreover 2<s<n-—1,and k < ["—;l] An easy calculation shows that

f(k,2)=f(1,2)=3—'n,§0,

f(k’"_1)=k(’“+2—n)§k(n-1+2—n)=_§(_"_I_3_)<

2 — 4

which implies f(k,s) < 0 by the property of quadric functions. By this claim,
(3.2) indicates that M is totally geodesic. The converse holds trivially. This
completes the proof of Theorem 1.

Remark: When ¢ = 0, k = 1 and n; = 2, Theorem 1 is obtained by Dillen,
Petrovic and Verstraelen in (7).
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4. Ideal conformally flat immersion

The Weyl’s conformal curvature temnsor C' of an n-dimensional Riemannian
manifold M is defined by

1
Cijit =Rijit — ——{Rixdji = Radji + dik Ryt ~ duRjr}
T
4. 7y (0ik051 — 01105k ),
( 1) + (n—l)(n——?)w k(s]l 615116)
with respect to an orthonormal frame field, where R;; = Ric(e;,ex). For
dimension n > 3, M is conformally flat if and only if C = 0.
Next we give the

Proof of Theorem 2: For ,j € I we have by Cy;;; = 0,

1 T
Kij — ——{Ru it t 7y = 0
g Bt Ry + oy = 0

By Lemmas 2.2 and 2.3 we get

K+ gt v+ 10607+ ()
t,le]l
n—s+k T 2(n—1)
(4.2) — (a1+a3)u+(n_1)(n_2) p— e=0.

Similarly, using Cogqas = 0 and Lemmas 2.2 and 2.3 we have

T _n+2k-2s 4 2(n-1)
(4.3) €+(n-—1)(n—2)~ 5 K + no 3

Inserting (4.3) into (4.2) we obtain

K+ — {a3+a§-+ Z[(h£1)2+(h§-[)2’]}
n-—2 ti€l;

n+2k-2s ,

n—2 B

n—s+k

(4.4) —

(@i + aj)p + e=0.

Also, Cigia = 0 together with Lemmas 2.2 and 2.3 gives

s—k—-2 n—s+k-1, 1 9 62
S—w—e , Bt
i ———n +n_2{a1+t§(u)
3 1

2(n—1
T beo (n—1)

(45) + (n-1)(n-2) n—2

e=0.
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Inserting (4.3) into (4.5) we have

1 2 12 s—k—2 s—k—-1,
_2{ai+ Z(hu)}+ g Gk o =0

tlel

(4.6)

For another j € Iy, (4.6) also holds. By summation we get

Lol vas o+ m)

tlel

s—k-2 20s—k -1
(47) e e =L

Combination of (4.4) and (4.7) gives
(4.8) (@i +aj)p+e—Kij—pt=0, Vi#£jel.

(4.6) holds for all ¢ € I, so by summation in I; we get

(4.9)

i€l t,i,5€n
(4.9) also holds for any n;, so by summation for n; we have

{Za +Z }=S(S_k_17)l:§(8_k_2)ﬂ2»

t,4,5

which implies by (2.1) that
(4.10) IRl = [n + (s — k)(s — k — 2)]p?
Now (4.8) holds for any K;; and ¢ # j in I;; then by summation we have

1 1 n1 — 1) (n1 — 1)(2 — nl)
§T(L1) = Z Kij = €+ 5 p2.

1<i<j<ny

The above equation also holds for any n;, thus by summation again

k k
(4.11) %ZT(L Z n; —1)e + %{33—2k—2n?}u2.
i=1 i=1

N)IP—‘

{Za + Z ht.)Q}=n1(s—k—;)_—2(s—k—2)ﬂ2.

215

Because M is an ideal immersion, then from (1.1), (1.5}, (1.6) and (4.11) we know

that

7= {(n? —2n3+2nk—n)+(k2+32—2k3+4s_3k_zn?)}u2
(4.12) + n{n —1)e.
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On the other hand, by the Gaussian equation and (4.10) we have

(4.13) 7 =n(n - 1)e+ [(n® — 2ns + 2nk — n) + (25 — 2k)]p?.
Here we have used ( k)2
2 _ n—s+ 2
B ==

Combination of (4.12) and (4.13) gives
k
(4.14) [(k —s)24+25— k- an} p?=0.
i=1

LEMMA 4.1: Let w(k) = (k—s)2 +2s —k — Zfﬂ n?. Then w(k) > 0 for all
k>2andn>s+2.

Proof (Using induction): First note that the Lemma holds for k = 2,
w(2) = 2(ning — ny —ng + 1) = 2(n; — 1)(ng — 1) > 0.

We assume the lemma holds for any &; then for k + 1,

k+1
wk+1) =(k+1-sp41)2 4+ 28041 — (k+1) - an
i=1

k
=[(k - sk) - (nk+1 - 1)]2 + 25k + 2nk+1 k-1~ an - ni_H

i=1
k
=[(k — sk)® + 28 — k — an]

+ (kg1 — 1)% = 2(k = s¢) (41 — 1) = (nf4q + 1 — 2ng41)]
:w(k) + 2(Sk - k)(nk“ - 1) > 0.

Thus the lemma follows.

By Lemma 4.1, (4.14) implies that g = 0. Now by (4.10), [|h||> = 0, i.e., M is

totally geodesic. The converse is obvious. This completes the proof of Theorem 2.
From the proof we know that when k =1, (4.13) becomes
7= (n—-1)(n+2-2n)p®+n(n— 1.

Thus we have immediately the following corollaries.
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COROLLARY 4.2: Let k = 1, n > n1 + 2 and n # 2(n; — 1). Then when
T =n(n—1)e, M is ideal conformally flat if and only if M is totally geodesic.

COROLLARY 4.3: For k =1, ny = 2, M is ideal conformally flat if and only if
K12 = £&.

Remark 4.4: When k > 1 and s = n+ 1, by a similar calculation as in the proof
of Theorem 2 above we obtain
s

k
T=———— (26— 2k Y nZ+ (K2 +E-2)s— (k* - B)p? + s(s + e
sz—Zf:ln?[ ; ( )s = ( )] (s+1)

Let g(ny,...,n) = 252 =20 n2 + (k2 4+ k—2)s — (k2 — k) # 0. It is easy
to see that if 7 = n(n — 1)¢, then M is ideal conformally flat if and only if M is
totally geodesic.

5. Ideal semi-symmetric hypersurfaces

Proof of Theorem 3: If rank A > 3 at some point, then Lemma 2.5 says that
M is semi-symmetric if and only if M is one of (3)-(6) in Theorem 3, where
Il > 3in (5) and (6). First note that any ideal immersion is one of the above 4
kinds of hypersurfaces if it is semi-symmetric. Secondly, the above 4 immersed
hypersurfaces are all ideal immersions. Next we consider the case rank 4 < 2.

If rank A = 0, M is the totally geodesic hyperplane.

If rank A = 1, the case doesn’t happen because M is ideal.

If rank A = 2, we assume a; # 0, a; # 0 and 7 # j. First note that we can
assume ¢, j € I1. Otherwise, ifi € I) and j € I3, we have a; = a; = u. When p is
constant, M is case (5) for [ = 2, and when p # constant, M is case (6) for [ = 2.
Now for ¢,j € I, a; + a; = 0. So M is an (n — 2)-ruled minimal hypersurface.
The converse also holds. This completes the proof of Theorem 3.

In order to prove Theorems 4 and 5, we give the following lemmas.

LEMMA 5.1: Let z: M™ — R"*1(¢ # 0) be a minimal hypersurface in the space
form with non-zero constant curvature ¢. Then
(1) when ¢ = 1, M is semi-symmetric if and only if M is totally geodesic or
has two distinct principal curvatures
n—1 l

)\1 = —l—" and /\2 = - m
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with multiplicities | and n — [, respectively;
(2) when ¢ = —1, M is semi-symmetric if and only if M is totally geodesic.

Proof: If M is not totally geodesic, there exist two non-zero principal curvatures
such that A; # Ae. By (2.6),

(51) )\1()\2 - )\z)(E + /\2)\1) =0
and
(5.2) A2(A1 = Ai)(e+ M) =0,

for any ¢ # 1, 2. Obviously J; is either A; or A2. We assume that the multiplicities
of A; and A are [ and n — I, respectively. Then

(5.3) i+ (n-0A=0.
Moreover, by (5.1) and (5.2) we have
(5.4) AMAz+e=0.

By (5.3) and (5.4) we have

-1 l
A2=""0 a2=
! A A
Thus we have
)\1=\/n—_l and Ao =— L fore =1.
l n—1
For ¢ = —1 this case doesn’t happen. Thus Lemma 5.1 follows.

LEMMA 5.2: Let x: M™ — R"*!(¢ # 0) be non-minimal and non-umbilical semi-
symmetric hypersurfaces. Then M is ideal if and only if M has two constant
principal curvatures a, and as such that ajag +¢ = 0.

Proof: Case (1),n>s+1.

By assumption p # 0. If there is some a; = 0 (for instance a; = 0), then by
(2.6), pu(ay — a;)(e + a1a;) = —paze = 0 for ¢ # 1, which implies a; = 0 for all i.
It contradicts i # 0. Now we have a; # 0 for all ¢ € {1,...,s}. Similar to the
proof of Lemma, 5.1, a; = p or a; = —¢/p. Without loss of generality we assume
that the multiplicity of eigenvalue g in the submatrix A; is l;. By tr A; = p, we
have

(n1—h)(—e/p) +lip=p
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which implies that p? = (ny — {1)/(l1 — 1), Note that I; # 1. Hence

nl—h o 11—1
11—1 - ’I’Ll—ll

fore=1, [1>1,

and
p=+vn, and a;=1/\/n; fore=-1, [;=0.
The discussion for ng,...,ng is similar and ny =ny = -+ - = ny.
Case (2),n=sand k > 2.
Similar to case (1) none of the principal curvatures is zero and only two, say
a; and aq, are different and satisfy

(5.5) ajas +&=0.

Now we consider the two submatrixes A; and A;. Without loss of generality
we assume A; and A, take the following forms:

alIll alllg
Al = ) A? = )

a2]n1_[1 a2In2—l2

for some integral functions {; and ls. Then by assumption

Lia + (’I”Ll - l1)a2 =lya; + (le — lg)az,
(5.6) (i = 2)ar = [(n2 — n1) + (l1 = b2)]as.

Let Il =1, — l,. By (5.5) and (5.6) we get
(5.7) [(—e —al) = (na — e,

which implies that [ is a constant integer because a; is a continuous function. If
1 # 0, it follows from (5.7) that a; is constant and so is ag. Ifl = 0, thenly =l5. A
similar discussion applies to ng, ..., ni and we conclude that the multiplicities of
ay and ay are all n/2 where n is even in this case. Let D(a1) = span{ei,...,e,/2}
and D(az) = span{ezi1,...,e,} be the curvature distributions of a; and ay,
respectively. Obviously n/2 > 1. It’s well known that the principal curvatures
are constant along the integral manifolds of their corresponding distributions. So
ei(ar) = 0 for i € {1,...,n/2} and ej{az) =0 for j € {n/2+1,...,n}. Thus
0 = e;(a1as + €) = e;(a1)az + a1€;(az) = are;(az), which implies that e;(as) =0
for i € {1,...,n/2} and so a; is constant. By (5.5), a; is constant, too. This
completes the proof of the Lemma.
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Proof of Theorems 4 and 5: By Lemmas 5.1 and 5.2, we know M is an iso-
parametric hypersurface with at most two distinct principal curvatures. Thus
by a famous classification theorem of Cartan, if M is ideal semi-symmetric, it
must be the hypersurfaces described in Theorems 4 and 5. Conversely, the above
hypersurfaces are also ideal semi-symmetric immersions for suitable ¢ and b. So
Theorem 4 and Theorem 5 follows.
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